EQUATIONS

Principal stresses for plane stress state

$$\sigma_1, \sigma_2 = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Extreme-value shear stresses for plane stress state

$$\tau_1, \tau_2 = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Plane-stress transformation equations

$$\sigma = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\phi + \tau_{xy} \sin 2\phi$$

$$\tau = -\frac{\sigma_x - \sigma_y}{2} \sin 2\phi + \tau_{xy} \cos 2\phi$$

Axial stress

$$\sigma = \frac{F}{A}$$

Normal stress for beam in bending

$$\sigma = \frac{Mc}{I}$$

Second-area moment

• for rectangular cross-section

$$I = \frac{bh^3}{12}$$

for circular cross-section •

$$I = \frac{\pi r^4}{4} = \frac{\pi d^4}{64}$$

• for hollow round cross-section

$$I = \frac{\pi}{4} \left(r_o^4 - r_i^4 \right) = \frac{\pi}{64} \left(d_o^4 - d_i^4 \right)$$

Maximum transverse shear stress

for rectangular cross-section •

$$\tau_{\max} = \frac{3V}{2A}$$

for circular cross-section •

$$\tau_{\max} = \frac{4V}{3A}$$

for hollow, thin-walled round cross-section • 21/

$$\tau_{\rm max} = \frac{2V}{A}$$

• for thin-walled I-beam

$$\tau_{\max} \approx \frac{V}{A_{\rm web}}$$

EQUATIONS (continued)

Shear stress due to torsion

$$\tau = \frac{T\rho}{J}$$
$$\tau_{\max} = \frac{Tr}{J}$$

Polar second moment of area

• for circular cross-section

$$J = \frac{\pi r^4}{2} = \frac{\pi d^4}{32}$$

• for hollow round cross-section

$$J = \frac{\pi}{2} \left(r_o^4 - r_i^4 \right) = \frac{\pi}{32} \left(d_o^4 - d_i^4 \right)$$

Ductile Coulomb-Mohr (DCM) theory

$$\frac{1}{n} = \frac{\sigma_1}{S_{vt}} - \frac{\sigma_3}{S_{vc}}$$

Maximum shear stress (MSS) theory for ductile materials

$$n = \frac{S_y}{2\tau_{\max}} = \frac{S_y}{\sigma_1 - \sigma_3}$$

Distortion energy (DE) theory for ductile materials

$$n = \frac{S_y}{\sigma'}$$

$$\sigma' = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2}{2}}$$

$$\sigma' = \sqrt{\frac{(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_x - \sigma_z)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2)}{2}}$$

Brittle Coulomb-Mohr (BCM) theory

$$\frac{1}{n} = \frac{\sigma_1}{S_{ut}} - \frac{\sigma_3}{S_{uc}}$$

Modified Mohr (MM) theory for brittle materials (plane stress)

$$n = \frac{S_{ut}}{\sigma_A} \quad \text{for } \sigma_A \ge \sigma_B \ge 0 \text{ and for } \sigma_A \ge 0 \ge \sigma_B \text{ where } \left|\frac{\sigma_B}{\sigma_A}\right| \le 1$$
$$\frac{1}{n} = \frac{(S_{uc} - S_{ut})\sigma_A}{S_{uc}S_{ut}} \quad \text{for } \sigma_A \ge 0 \ge \sigma_B \text{ where } \left|\frac{\sigma_B}{\sigma_A}\right| > 1$$
$$n = -\frac{S_{uc}}{\sigma_B} \quad \text{for } 0 \ge \sigma_A \ge \sigma_B$$

Stress intensity factor

 $K_{I} = \beta \sigma \sqrt{\pi a}$ Factor of safety against sudden fracture

$$n = \frac{K_{IC}}{K_I}$$

Road maps and important design equations for the Stress-Life Method

As stated in Section 6–16, there are three categories of fatigue problems. The important procedures and equations for deterministic stress-life problems are presented here, organized into those three categories.

Completely Reversing Simple Loading

1 Determine S'_e either from test data or

$$S'_{e} = \begin{cases} 0.5S_{ut} & S_{ut} \le 200 \text{ kpsi} (1400 \text{ MPa}) \\ 100 \text{ kpsi} & S_{ut} > 200 \text{ kpsi} \\ 700 \text{ MPa} & S_{ut} > 1400 \text{ MPa} \end{cases}$$
(6–10)

2 Modify S'_e to determine S_e .

$$S_e = k_a k_b k_c k_d k_e S'_e \tag{6-17}$$

$$k_a = aS_{ut}^b \tag{6-18}$$

Table 6–2 Curve Fit Parameters for Surface Factor, Equation (6–18)

	Factor <i>a</i>		Exponent
Surface Finish	S_{ut} , kpsi	S_{ut} , MPa	b
Ground	1.21	1.38	-0.067
Machined or cold-drawn	2.00	3.04	-0.217
Hot-rolled	11.0	38.6	-0.650
As-forged	12.7	54.9	-0.758

Rotating shaft. For bending or torsion,

$$k_{b} = \begin{cases} (d/0.3)^{-0.107} = 0.879d^{-0.107} & 0.3 \le d \le 2 \text{ in} \\ 0.91d^{-0.157} & 2 < d \le 10 \text{ in} \\ (d/7.62)^{-0.107} = 1.24d^{-0.107} & 7.62 \le d \le 51 \text{ mm} \\ 1.51d^{-0.157} & 51 < 254 \text{ mm} \end{cases}$$
(6-19)

For axial,

$$k_b = 1$$
 (6–20)

Nonrotating member. For bending, use Table 6–3 for d_e and substitute into Equation (6–19) for d.

$$k_c = \begin{cases} 1 & \text{bending} \\ 0.85 & \text{axial} \\ 0.59 & \text{torsion} \end{cases}$$
(6–25)

$$S_T/S_{RT} = 0.98 + 3.5(10^{-4})T_F - 6.3(10^{-7})T_F^2$$

$$S_T/S_{RT} = 0.99 + 5.9(10^{-4})T_C - 2.1(10^{-6})T_C^2$$
(6-26)

Either use the ultimate strength from Equation (6–26) to estimate S_e at the operating temperature, with $k_d = 1$, or use the known S_e at room temperature with $k_d = S_T/S_{RT}$ from Equation (6–26).

Table 6–4 Reliability Factor k_e Corresponding to 8 Percent Standard Deviation of the Endurance Limit

Reliability, %	Transformation Variate z_a	Reliability Factor k_e
50	0	1.000
90	1.288	0.897
95	1.645	0.868
99	2.326	0.814
99.9	3.091	0.753
99.99	3.719	0.702

3 Determine fatigue stress-concentration factor, K_f or K_{fs} . First, find K_t or K_{ts} from Table A-15.

$$K_f = 1 + q(K_t - 1)$$
 or $K_{fs} = 1 + q_s(K_{ts} - 1)$ (6–32)

Obtain q from either Figure 6–26 or 6–27.

Alternatively,

$$K_f = 1 + \frac{K_t - 1}{1 + \sqrt{a/r}} \tag{6-34}$$

Bending or axial:

 $\sqrt{a} = 0.246 - 3.08(10^{-3})S_{ut} + 1.51(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3 \quad 50 \le S_{ut} \le 250 \text{ kpsi}$ $\sqrt{a} = 1.24 - 2.25(10^{-3})S_{ut} + 1.60(10^{-6})S_{ut}^2 - 4.11(10^{-10})S_{ut}^3 \quad 340 \le S_{ut} \le 1700 \text{ MPa}$ (6-35)

Torsion:

$$\sqrt{a} = 0.190 - 2.51(10^{-3})S_{ut} + 1.35(10^{-5})S_{ut}^2 - 2.67(10^{-8})S_{ut}^3 \quad 50 \le S_{ut} \le 220 \text{ kpsi}$$

$$\sqrt{a} = 0.958 - 1.83(10^{-3})S_{ut} + 1.43(10^{-6})S_{ut}^2 - 4.11(10^{-10})S_{ut}^3 \quad 340 \le S_{ut} \le 1500 \text{ MPa}$$

(6-36)

- 4 Apply K_f to the nominal completely reversed stress, $\sigma_a = K_f \sigma_{a0}$.
- 5 Determine *f* from Figure 6–23 or Equation (6–11). For S_{ut} lower than the range, use f = 0.9.

$$f = 1.06 - 2.8(10^{-3})S_{ut} + 6.9(10^{-6})S_{ut}^2 \qquad 70 < S_{ut} < 200 \text{ kpsi}$$

$$f = 1.06 - 4.1(10^{-4})S_{ut} + 1.5(10^{-7})S_{ut}^2 \qquad 500 < S_{ut} < 1400 \text{ MPa}$$
(6-11)

$$a = (f S_{ut})^2 / S_e \tag{6-13}$$

$$b = -[\log (f S_{ut}/S_e)]/3$$
(6-14)

6 Determine fatigue strength S_f at N cycles, or, N cycles to failure at a reversing stress σ_{ar} .

(*Note:* This only applies to purely reversing stresses where $\sigma_m = 0$.)

$$S_f = aN^b \tag{6-12}$$

$$N = (\sigma_{ar}/a)^{1/b} \tag{6-15}$$

Fluctuating Simple Loading

For S_e , K_f or K_{fs} , see previous subsection.

1 Calculate σ_m and σ_a . Apply K_f to both stresses.

$$\sigma_a = |\sigma_{\max} - \sigma_{\min}|/2$$
 $\sigma_m = (\sigma_{\max} + \sigma_{\min})/2$ (6-8), (6-9)

2 Check for infinite life with a fatigue failure criterion. Use Goodman criterion for conservative result, or another criterion from Section 6–13.

$$\sigma_m \ge 0 \qquad n_f = \left(\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_{ut}}\right)^{-1}$$
 (6-41)

$$\sigma_m < 0 \qquad n_f = \frac{S_e}{\sigma_a} \tag{6-42}$$

3 Check for localized yielding.

$$n_y = \frac{S_y}{\sigma_{\text{max}}} = \frac{S_y}{\sigma_a + |\sigma_m|}$$
(6-43)

4 For finite-life, find an equivalent completely reversed stress to use on the S-N diagram with Equation (6–15). Select one of the following criterion. Discussion of merits is in Section 6–14.

Goodman:

$$\sigma_{ar} = \frac{\sigma_a}{1 - \sigma_m / S_{ut}} \tag{6-59}$$

Morrow:

$$\sigma_{ar} = \frac{\sigma_a}{1 - \sigma_m / \tilde{\sigma}_f}$$
 or $\sigma_{ar} = \frac{\sigma_a}{1 - \sigma_m / \sigma'_f}$ (6–60)

Estimate for steel: $\sigma'_f = S_{ut} + 50 \text{ kpsi}$ or $\sigma'_f = S_{ut} + 345 \text{ MPa}$ (6–44)

SWT:
$$\sigma_{ar} = \sqrt{\sigma_{\max}\sigma_a} = \sqrt{(\sigma_m + \sigma_a)\sigma_a}$$
 (6–61)

Walker:
$$\sigma_{ar} = \sigma_{\max}^{1-\gamma} \sigma_a^{\gamma} = (\sigma_m + \sigma_a)^{1-\gamma} \sigma_a^{\gamma}$$
 (6–62)

Estimate for steel:
$$\gamma = -0.0002S_{ut} + 0.8818$$
 (S_{ut} in MPa)
 $\gamma = -0.0014S_{ut} + 0.8818$ (S_{ut} in kpsi) (6-57)

If determining the finite life N with a factor of safety n, substitute σ_{ar}/n for σ_{ar} in Equation (6–15). That is,

$$N = \left(\frac{\sigma_{ar}/n}{a}\right)^{1/b}$$

Combination of Loading Modes

See previous subsections for earlier definitions.

1 Calculate von Mises stresses for alternating and mean stress states, σ'_a and σ'_m . When determining S_e , do not use K_c nor divide by K_f or K_{fs} . Apply K_f and/or K_{fs} directly to each specific alternating and mean stress. For the special case of combined bending, torsional shear, and axial stresses

$$\sigma_{a}' = \{ [(K_{f})_{\text{bending}}(\sigma_{a0})_{\text{bending}} + (K_{f})_{\text{axial}}(\sigma_{a0})_{\text{axial}}]^{2} + 3 [(K_{fs})_{\text{torsion}}(\tau_{a0})_{\text{torsion}}]^{2} \}^{1/2}$$
(6–66)

$$\sigma'_{m} = \{ [(K_{f})_{\text{bending}}(\sigma_{m0})_{\text{bending}} + (K_{f})_{\text{axial}}(\sigma_{m0})_{\text{axial}}]^{2} + 3 [(K_{fs})_{\text{torsion}}(\tau_{m0})_{\text{torsion}}]^{2} \}^{1/2}$$
(6-67)

- 2 Apply stresses to fatigue criterion [see previous subsection].
- **3** To check for yielding, apply the distortion energy theory as usual by putting maximum stresses on a stress element and calculating a von Mises stress.

$$n_y = S_y / \sigma'_{\rm max}$$

Or for a conservative check, apply the yield line with the von Mises stresses for alternating and mean stresses.

$$n_y = \frac{S_y}{\sigma'_a + \sigma'_m} \tag{6-43}$$

EQUATIONS (continued)

Key design (shear failure due to static loading)

$$n = \frac{S_{sy}}{\tau} = \frac{0.577S_y}{\tau}$$
$$\tau = \frac{F}{A_{\text{shear}}} = \frac{T/r}{w * l}$$

Key design (crushing failure due to static loading)

$$n = \frac{S_{yc}}{\sigma}$$
$$\sigma = \frac{T/r}{\frac{h}{2} * l}$$

EQUATIONS (continued)

Helical compression springs

$$k = \frac{F}{y} \approx \frac{d^4 G}{8D^3 N_a}$$

$$C = \frac{D}{d}$$

$$\tau = K_B \frac{8FD}{\pi d^3}$$

$$K_B = \frac{4C+2}{4C-3}$$

$$S_{ut} = \frac{A}{d^m}$$

$$L_{crit} = \frac{\pi D}{\alpha} \sqrt{\frac{2(E-G)}{2G+E}}$$

$$L_{crit} = 2.63 \frac{D}{\alpha} \text{ for steels}$$

$$n_s = \frac{S_{sy}}{\tau}$$

$$\frac{1}{n_f} = \frac{\tau_a}{S_{se}} + \frac{\tau_m}{S_{su}}$$

$$\tau_a = K_B \frac{8F_a D}{\pi d^3}$$

$$\tau_m = K_B \frac{8F_a D}{\pi d^3}$$

$$F_a = \frac{F_{max} - F_{min}}{2}$$

$$F_m = \frac{F_{max} + F_{min}}{2}$$

$$S_{su} = 0.67S_{ut}$$

$$S_{se} = \frac{S_{sm}}{S_{su}}$$

For unpeened springs: $S_{sa} = 35$ ksi = 241 MPa and $S_{sm} = 55$ ksi = 379 MPa

For peened springs: S_{sa} = 57.5 ksi = 398 MPa and S_{sm} = 77.5 ksi = 534 MPa